网站地图 原创论文网,覆盖经济,法律,医学,建筑,艺术等800余专业,提供60万篇论文资料免费参考
主要服务:论文发表、论文修改服务,覆盖专业有:经济、法律、体育、建筑、土木、管理、英语、艺术、计算机、生物、通讯、社会、文学、农业、企业

果树多倍体砧木主要表现与特异性状形成机理

来源:原创论文网 添加时间:2019-10-12

  摘    要: 果树多倍体砧木树形较矮,对干旱、盐害、缺铁等逆境的耐受能力较强。多倍体作砧木可诱导植株矮化,还能提高植株对干旱、缺铁、低温、盐害以及重金属等非生物胁迫的耐受能力。目前,在柑橘、樱桃、苹果的生产中已得到应用。然而多倍体砧木育性低、遗传不稳定,繁育受到限制。虽然无性繁殖、无融合生殖以及有性生殖均有应用,但各有不足,有待改进。多倍体砧木部分特异性状的形成机理得到研究,这些特性主要与其解剖结构、胁迫响应相关基因的表达和代谢产物有关,其中脱落酸(ABA)可能参与调节树体矮化,在耐受干旱胁迫中起重要作用。总体上,多倍体砧木的研究和应用均处于起步阶段,后续应培育更多新类型,加快推广应用,并加强繁育研究和特异性状形成机理的研究。

  关键词: 果树; 多倍体砧木; 矮化; 抗逆性;

  Abstract: Polyploid rootstocks have some specific and excellent traits such as dwarf, drought tolerance, salt tolerance and iron-deficiency tolerance. As being used as rootstock, polyploid could induce plants dwarf and enhance tolerance of trees to abiotic stress, such as drought tolerance, iron-deficiency, salt, heavy metal and chill. In citrus, cherry and apple, some polyploid rootstocks have been applied in production. Nonetheless, low fertility and genetic instability limit reproduction of polyploid rootstock. Although vegetative propagation, apomixes and sexual reproduction have been employed, they all have their own disadvantages, need improvements. Formation mechanisms of some specific traits of polyploid rootstocks have been researched, and these traits were concerned with their anatomical structure, expression of some stress resistance-related genes and metabolites. Abscisic acid (ABA) may take part in plant dwarfing regulation and plays an important role in drought tolerance of polyploid rootstock. In an overall view, application and researches of polyploid rootstock are both at the starting stage. In the subsequent processes, more new polyploid rootstocks should be breed, popularization and application should be speed up, researches on reproduction methods and specific traits formation mechanisms should be reinforced.

  Keyword: fruit tree; polyploid rootstock; dwarfing; stress tolerance;

  较多植物的基因组在进化过程中经历过多倍化(Masterson,1994;Cui et al.,2006;Wood et al.,2009)。农业生产中,大量多倍体被直接作为作物品种,如:香蕉(Musa)为三倍体(2n=3x=33),烟草(Nicotinan tabacum)为四倍体(2n=4x=48),普通小麦(Triticum aestivum)为六倍体(2n=6x=42),凤梨草莓(Fragaria × ananassa)为八倍体(2n=8x=56)。多倍体对逆境的耐受能力强,更能适应气候和环境的变化,在进化中占优势,且有利于稳定农作物产量(Comai,2005;Udall & Wendel,2006;Bhardwaj,2015);多倍体植株粗壮、器官巨大、育性较低,可提高农作物的产量和可食率。

  近年来,果树多倍体砧木矮化树形、耐受非生物胁迫的性状得到重视,且在研究和应用方面取得了一定的进展。基于此,本文对果树多倍体砧木的研究现状进行分析,并对后续研究进行展望,以供砧木育种工作者参考。
 

果树多倍体砧木主要表现与特异性状形成机理
 

  1、 果树多倍体砧木的主要表现

  1.1、多倍体砧木的特异性状

  (1)树形较矮。节间较短是多倍体植物的主要特征之一,多倍体砧木也有类似表现。葡萄(Vitis)砧木品种‘Gloire de Montpellier’、‘Rupestris St. George’和‘Couderc 3309’的四倍体与其二倍体相比,根较短、较粗,且较紧凑,芽和节间也较短,生长势较弱(Motosugi et al.,2002);三倍体葡萄砧木‘E-1’的植株和根的形态介于亲本‘5BB’的二倍体与四倍体之间(Motosugi & Naruo,2003)。柑橘(Citrus)砧木‘Rangpur lime’四倍体与二倍体相比叶片较厚,根、茎较粗(Allario et al.,2011)。苹果(Malus pumila)砧木珠美海棠(Malus zumi)四倍体与二倍体相比,植株显着较矮,茎干较细,分枝数明显减少(郭玉,2012);苹果砧木品种SH40也有相同表现(贾林光,2015)。这表明在不同的果树类型中,多倍体砧木均具有树形矮小的特点。

  (2)对逆境的耐受能力较强。柑橘砧木‘Rangpur lime’的四倍体植株对水分亏缺的耐受能力强于二倍体(Allario,2009);‘Volkamer lemon’四倍体植株在干旱条件下细胞膜的稳定性更强(Vieira et al.,2016)。柑橘 ‘Pomeroy Poncirus trifoliate’、‘Cleopatra Mandarin’、‘Commune Mandarin’、‘Willow-Leaf mandarin’、‘Carrizo’四倍体以及Poncirus trifoliate-Citrus deliciosa体细胞杂种的耐盐害能力比二倍体强(Basel et al.,2004;Mouhaya et al.,2008;Saleh et al.,2008; Ruiz et al.,2012);‘寒富’苹果四倍体的耐盐能力也强于二倍体(薛浩 等,2015)。一些砧木的多倍体类型还有较为特殊的表现,如柑橘体细胞杂种四倍体‘Tetrazyg’对象虫/疫霉复合体的耐受能力较强,发病率低(Grosser et al.,2003);四倍体‘Carrizo’可以耐受硼过量(Ruiz et al.,2016),对缺铁也有一定的耐受能力(Ruiz et al.,2012);来源于小金海棠(Malus xiaojinensis,2n = 4x = 68)实生后代的四倍体苹果砧木‘中砧1号’也具有较强的耐缺铁能力(韩振海 等,2013)。

  多倍体砧木特异性状的相关报道较少,但部分株系在树形矮化以及耐受逆境如干旱、盐害、硼过量及缺铁等方面有较好的表现,其中柑橘多倍体砧木的报道稍多,如:‘Carrizo’的研究已经涉及多个方面,其它作物类型还有待加强。

  1.2、 多倍体作砧木诱导植株产生优良特异性状

  (1)树形矮化。报道显示,多倍体作砧木的葡萄植株较矮,生长势稍弱,分枝减少,根系短粗且较为紧凑(Motosugi and Naruo, 2003; Motosugi et al.,2007;Gao-Takai et al.,2017)。着名的樱桃(Cerasus)砧木品种‘吉塞拉’为三倍体,矮化作用明显,应用较广(刘庆忠和王侠礼,2000;Webster et al.,2000;刘庆忠 等,2001)。柑橘异源多倍体砧木已用于生产以控制植株树形(Grosser et al.,2011;Hussain et al.,2012)。

  (2)对非生物胁迫的耐受能力较强。部分多倍体对非生物胁迫具较强的耐受能力,这种能力在以其为砧木的植株中也有表现。如:四倍体‘Rangpur lime’作砧木、‘Valencia Delta sweet orange’作接穗,植株的耐旱能力明显比二倍体作砧木强(Allario et a.,2008;Allario et al.,2013);以‘中砧1号’(2n = 4x = 68)为砧木的苹果树在常出现缺铁黄化现象的土壤中能正常生长,且无缺铁黄化现象(韩振海 等,2013;余俊 等,2015)。部分多倍体的耐受能力虽未见报道,但以其为砧木的植株却具有较强的耐受能力。如:异源四倍体砧木嫁接‘Valencia’甜橙(Citrus sinensis),整个植株的耐盐能力得到提升(Grosser,2012);Balal等(2017)的研究发现,嫁接在四倍体枳(Poncirus trifoliata)、Citrus reshni和柠檬(Citrus limon)上的‘Kinnow’对重金属Cr的耐受能力强于嫁接在二倍体上的植株;嫁接在四倍体‘Carrizo’上的‘Clementine’比嫁接在二倍体‘Carrizo’上的植株具更强的低温耐受能力(Oustric et al.,2017)。

  (3)高肥效。拟南芥(Arabidopsis thaliana)四倍体对钾的吸收能力强于二倍体。以四倍体作砧木,植株的钾吸收能力与四倍体植株相近,均强于二倍体植株和二倍体作砧木的植株(Chao et al.,2013)。虽然在果树中没有类似报道,但可以借鉴试验。

  总体看来,以多倍体作砧木的植株在树形矮化、耐缺铁方面的表现较突出,在樱桃、柑橘、苹果的生产中已得到应用。以多倍体为砧木的植株在耐受干旱、盐害、重金属和低温等非生物胁迫方面也有积极表现,可在生产中尝试应用。值得注意的是,拟南芥四倍体作砧木具有高肥效的特点,果树中可以参考试验以提高K肥的利用效率。

  1.3、 多倍体作砧木的主要障碍

  育性低、遗传不稳定是多倍体最突出的特点。所以,繁殖力低及后代性状分离是多倍体作砧木的主要障碍。目前,多倍体砧木可通过以下几种方式繁育:

  (1)无性繁殖。樱桃三倍体砧木品种‘吉塞拉’的繁殖主要通过扦插和组织培养(刘庆忠和王侠礼,2000;刘庆忠 等,2000,2001,2006;Vujovi? et al,2012)。但扦插苗、组培苗的根系多为须根系,其延伸至深层土壤的能力较直根系弱,树体固地性差、易倒伏,且不耐旱。部分果树组织培养可通过胚状体途径成苗(冀爱青和吴国良,2011),其根与实生苗的根相近,为直根系。但较多果树组织培养的难度较大,胚状体途径再生植株更不易实现。苹果、梨(Pyrus)等果树中有使用矮化中间砧的记录(贾敬贤 等,1991;陈长蓝和龚欣,1996;闫树堂 等,2005;张强 等,2013),故也可采用嫁接的方式繁育多倍体砧木。但多倍体作中间砧,其根系的优良性状以及与根系相关的其它优良性状可能无法利用。部分果树,如枣(Ziziphus jujuba)、李(Prunus salicina)、桃(Amygdalus persica)等可通过分蘖繁殖,但繁殖系数较低,短期内难以获得大量群体。

  (2)无融合生殖。无融合生殖中有一类胚为体胚,其性状与亲本一致,可保持多倍体的优良性状。柑橘的珠心胚即为此类,异源四倍体砧木可通过珠心胚繁育(Grosser & Gmitter,2011)。可是柑橘的体胚发育依赖有性胚发育,母本需具有一定育性,故育性较低的多倍体如三倍体难以此方式繁育。苹果砧木平邑甜茶(Malus hupehensis (Pamp) Rehd.)虽为三倍体(2n = 3x = 51),但其体胚发育不依赖有性胚发育(董文轩 等,1996;刘丹丹,2012),故平邑甜茶在苹果生产中已有一定面积应用。然而,能进行无融合生殖的果树种类较少,应用范围有限。

  (3)有性生殖。部分四倍体能自交产生四倍体,与二倍体杂交可产生三倍体(Grosser & Gmitter,2011;梁森林 等,2018),通过倍性检测可获得倍性一致的群体;由亲缘关系较远的物种形成或合成的异源四倍体育性较高,后代倍性和性状均较一致。中华猕猴桃(Actinidia chinensis)同源四倍体能快速二倍体化,染色体联会以二价体为主,后代的倍性较均一(饶静云 等,2012;Wu et al.,2014);美味猕猴桃是中华猕猴桃同源六倍体,其减数分裂正常,后代倍性也较稳定(Mertten et al.,2012)。所以,单从倍性一致性的角度看,多倍体通过有性途径进行繁育的难度不大。但果树多为杂合基因型,有性后代易发生性状分离,亲本性状难以保持。

  由此可见,虽然多倍体砧木的繁育方式较多,但各有利弊。须对其中较具优势的繁育方法进行改良以适应较多种类的果树。

  2、果树多倍体砧木及嫁接植株特异性状形成机理

  2.1、 多倍体砧木特异性状形成机理

  2.1.1、 特异形态形成机理

  对多倍体砧木特异形态形成机理的研究较少且不深入,仅见少数形态学的分析。如柑橘砧木‘Rangpur lime’四倍体的叶片显着较二倍体的叶片厚,这与四倍体的表皮细胞、栅栏组织细胞以及海绵组织细胞体积较大有关;四倍体根的直径显着大于二倍体,这与四倍体根的表皮细胞、皮层细胞较大有关;而茎部不同组织的横切面积无显着差异,但四倍体茎部不同组织的细胞明显较大(Allario et al.,2011)。通常细胞的体积随倍性增加而增加(Tsukaya,2013),细胞变大可直接导致器官变大,这可能是多倍体一般表现器官巨大的原因(Sugiyama,2005)。但多倍体砧木节间较短、分枝少,目前对其形成机理的研究还未见系统报道。研究发现,‘Rangpur lime’四倍体植株根部合成的ABA较二倍体多,并经长距离运输到达接穗,使接穗的ABA含量升高(Allario et al.,2013),这可能与植株矮化和分枝数减少有关(Arney & Mitchell,1969;Kamiński et al.,1971;牛自勉和梁德声,1991)。目前,ABA负向调节植株分枝已在拟南芥中得到证实(Yao & Finlayson,2015);对葡萄的研究也表明,ABA在侧芽休眠中有积极作用(Vergara et al.,2017)。

  为解释倍性增加导致植物发育期延长、较高倍性材料株型变小的现象,学者们引入了补偿效应(Comai,2005;Tsukaya,2008):1、细胞变大,内含物增多,其对物质和能量的消耗也相应增多,为维持整体平衡,只能以减慢细胞分裂来补偿;2、细胞增大使细胞中与分裂相关的部分蛋白须在较大空间行使功能,由此增大了其功能实现的压力,故细胞分裂被限制。多倍体节间缩短和分枝减少也可引用补偿效应解释,即叶片、花及果实变大的物质、能量消耗由节间缩短、分枝数减少来补偿。

  此外,基因组多倍化后大量基因冗余,植物会选择性地沉默一些基因,以补偿负面影响(Pikaard,2001;Madlung et al.,2005),部分基因的沉默可能会使细胞数量减少、器官变小(Kurepa & Smalle,2009)。

  2.1.2、特异生理特征形成机理

  目前,对多倍体砧木特异生理特征形成机理的研究主要涉及耐旱、耐盐以及耐缺铁。

  通过代谢组分析发现,资阳香橙(Citrus junos cv. Ziyang xiangcheng)四倍体叶片中积累的初级代谢产物较二倍体多,一些与胁迫相关的产物如蔗糖、脯氨酸、γ-氨基丁酸在四倍体中显着增加,而次级代谢产物的积累被抑制,总计33种黄酮类物质下调,6种上调;转录组分析显示,202个基因(占检测基因总数的0.8%)的表达量在二倍体和四倍体间存在显着差异,而这些基因与盐胁迫、水分胁迫和ABA胁迫响应高度相关(Tan et al.,2015)。而‘Rangpur lime’四倍体与二倍体的差异则是基因非显着差异表达的结果(Allario et al.,2011):二者差异表达的基因少于1%,最大表达量差异在2倍以内,6个基因上调,其中5个与干旱胁迫有关。

  中度盐胁迫时,大翼橙(Citrus macrophylla)二倍体叶片中Cl-和Na+浓度较高,而四倍体叶片中K+浓度较高,这说明盐胁迫对二倍体的离子吸收和运输产生了较大影响,而四倍体受到的影响较小;高盐浓度下,二倍体叶片受到较大损害,其Cl-浓度高于四倍体,而Na+浓度则无显着差异(Ruiz et al.,2016b);‘Carrizo’的表现与大翼橙相近(Ruiz et al.,2016c);对萝卜(Raphanus sativus)的研究也可作参考:四倍体较二倍体更耐盐,四倍体根部的K+/Na+比更高(Meng et al.,2011)。可见,多倍体的耐盐能力与其对K+、Na+的吸收和运输密切相关。一些常见的蛋白、抗氧化相关蛋白以及水分运输相关的蛋白也参与了多倍体砧木耐盐性的调节。盐胁迫条件下,耐盐柑橘品种‘Cleopatra’二倍体和四倍体以及‘Willow leaf mandarin’的四倍体叶片中几种常见蛋白的表达量均较高,抗氧化酶以及热激蛋白在四倍体中的表达量也较高,这些蛋白可能在耐盐胁迫中起重要作用,其中抗氧化酶和热激蛋白的表达量与倍性相关(Podda et al.,2013);四倍体‘寒富’苹果较强的耐盐性可能与盐胁迫下水通道相关蛋白基因的表达水平较高有关(薛浩 等,2015)。

  小金海棠耐缺铁机理研究已取得较多成果。缺铁条件下,小金海棠根部分泌H+的能力被激活,三价铁螯合物还原酶活性增加(李凌,2002)。多个与铁高效相关的蛋白被鉴定,主要包括物质、能量代谢相关蛋白和胁迫应答相关蛋白,如UDP-葡萄糖焦磷酸化酶、果糖激酶、NAD依赖的异柠檬酸脱氢酶、S-腺苷甲硫氨酸合成酶、单脱氢抗坏血酸还原酶、维生素B6合成酶亚基、Pir76b蛋白、儿茶酚氧位甲基转移酶等(王晶莹,2006)。多个研究(王少甲,2014;潘海发,2015;刘伟,2017;孙朝华,2017)综合表明:缺铁胁迫下,小金海棠首先增强铁的吸收,再加强铁的再利用过程,乙烯以及活性氧(ROS)信号途径在缺铁胁迫早期进行响应;一些相关蛋白和基因的功能得到初步验证,如MxNRAMP1蛋白的铁转运机制,ERF4/ERF72和MdROP1的缺铁应答功能。此外,NO可能在小金海棠缺铁响应中起重要作用(李玉娜,2016)。

  2.2、多倍体砧木诱导接穗产生特异性状的机理

  由于Cr元素被阻隔在根部,未运输至茎和叶,故四倍体枳、Citrus reshni和柠檬作砧木的‘Kinnow mandarin’对重金属Cr的耐受能力较强(Balal et al.,2017),但阻隔机理还有待进一步研究。此外,Cr胁迫条件下,四倍体作砧的‘Kinnow mandarin’的糖酵解作用较强(Shahid et al,2018a),叶片中多胺和酚含量也较高,这可能与Cr耐受能力有关(Shahid et al,2018b)。

  干旱条件下,四倍体‘Rangpur lime’作砧木的植株的气孔电导率较低,叶片和根部的ABA含量较高,根部干旱胁迫相关基因的表达量也较高,其中包括调节ABA合成的基因CsNCED1。这表明,四倍体中干旱胁迫相关基因的表达模式被修改,以调节ABA的合成和长距离运输(Allario et al.,2013)。进一步分析(Dutrad et al.,2017)显示,不同倍性‘Rangpur lime’作砧木应对干旱胁迫的策略不同:与二倍体作砧木相比,四倍体作砧木植株的ABA含量更高,调节气孔关闭,从而降低了蒸腾导致的水分损失,这与类胡萝卜素/ABA生物合成相关的基因表达相关,故四倍体作砧木的植株失水更少;四倍体作砧木植株叶片的蜡含量较高,这在一定程度上增加了四倍体作砧木植株的抗旱能力。

  低温条件下,四倍体‘Carrizo’作砧的‘Clementine’的净光合效率、气孔导度、叶绿素荧光、淀粉水平降低的幅度均比二倍体作砧木的植株小,丙二醛含量和电解质渗漏也处于较低水平;过氧化氢酶、抗坏血酸过氧化物酶以及脱氧抗坏血酸还原酶的比活度较高。这表明,‘Carrizo’四倍体增强‘Clementine’的抗寒能力主要得益于部分抗氧化系统的作用(Oustric et al.,2017)。

  3 、果树多倍体砧木的研究展望

  总体看来,多倍体作砧木具有一定的优势,但其研究和应用均处于起步阶段,广度和深度有限。建议后续研究如下:

  (1)开展更多的多倍体砧木试验并加快推广应用。目前仅见柑橘、樱桃和苹果应用多倍体作砧木进行生产,且类型或品种较少,应用的范围也不广,较多具特异性状的多倍体砧木仍处于试验阶段。故首先应加快优良多倍体砧木的推广、应用,如苹果四倍体矮化砧木类型,柑橘四倍体耐旱、耐盐、耐寒砧木类型等;其次,在已有多倍体砧木的果树中试验更多多倍体基因型,获得新的优良类型;第三,可在未见多倍体作砧木的果树中开展多倍体砧木试验。树形矮化在多倍体中较为普遍,目前劳动力缺乏,对省力化栽培有极大需求,可重点在大型果树中开发和应用多倍体矮化砧木。此外,多倍体在抗逆性方面有较为突出的表现,也可作为后续多倍体砧木开发的主要目标,特别是耐旱特性在南方山区和北方地区有较为广阔的应用前景,耐寒特性对柑橘在高海拔地区、高纬度地区的生产也较为有利。

  (2)加强多倍体砧木繁育研究。有性后代倍性和性状不稳定,故无性途径可作为果树多倍体砧木繁育的主要方法。扦插苗、组培苗的须根系,或可通过根系整理、限制生长等措施改善其固地性较差、不耐旱等缺点(史滟滪 等,2015)。组织培养过程中的胚状体成苗也值得广泛研究和应用。可进行无融合生殖的果树种类较少,须在对无融合生殖特别是专性无融合生殖的发生机理进行深入研究的基础上,通过杂交转育、转基因以及基因编辑等手段对其它植物种类进行改良。

  (3)加强多倍体作砧木的砧穗互作及嫁接植株特异性状形成机理研究。多倍体树体矮化的形成机理还未见报道,有待研究;耐盐、耐旱、耐低温、耐受重金属机理的研究虽有涉及,但并不系统和深入,需进一步加强。小金海棠耐缺铁机理的研究有一定的进展,但其机理在多倍体耐缺铁中是否具有共性还不清楚。其它性状如高肥效可在果树中试验证实,并对其机理进行研究,以减少钾肥施用量,节约成本。由于树体矮化是多倍体较为普遍的特征,具有共性,且在应用中有较高价值,可作为研究的重点之一;耐盐、耐旱、耐缺铁、耐低温等特性具有较广泛的应用需求,也可作为研究的主要内容。值得注意的是,ABA在多倍体砧木抗逆中起重要作用,也可能参与调控树体矮化,故应对多倍体砧木中ABA的生理作用及其机理进行较为深入而全面的分析。

  参考文献

  [1] Allario T,Mouhaya W,Javier B,Iglesias D,Colmenero-Flores J M,Jaffuel S,Pina J A,Talon M,Navarro L,Ollitrault P,Morillon R. 2008. Citrus tetraploid rootstocks are more tolerant to water deficit than diploid//Prohens J,Badenes M L. Modem variety breeding for present and future needs. Valencia:Editorial Universidad Politécnica de Valencia.
  [2] Allario T,Brumos J,Colmenero J M,Iglesias D,Juarez J,Pina J A,Talon M,Navarro L,Ollitrault P,Morillon R. 2009. Autotetraploid Citrus limonia rootstocks are more tolerant to water deficit than parentalal diploids//International Conference on Polyploidy, Hybridization and Biodiversity, Saint-Malo, Franc.
  [3] Allario T,Brumos J,Colmenero-Flores J M,Tadeo F,Froelicher Y,Talon M,Navarro L,Ollitrault P,Morillon R. 2011. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany,62 (8):2507 - 2509.
  [4] Allario T,Brumos J,Colmenero-Flores J M,Iglesias D J,Pina J A,Navarro L,Talon M,Ollitrault P,Morillon R. 2013. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell & Environment,36 (4):856 - 868.
  [5] Arney S E,Mitchell D L. 1969. The effect of abscisic acid on stem elongation and correlative inhibition. New Phytologist,68(4):1001-1015.
  [6] Balal R M,Shahid M A,Vincent C,Zotarelli L,Liu G,Mattson N S,Rathinasabapathi B,Martínez-Nicolas J J,Garcia-Sanchez F. 2017. Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environmental & Experimental Botany,140:8 - 18.
  [7] Basel S,Patrick O,Rapha?l M. 2004. Effect of salt stress in diploid and tetraploid citrus rootstocks//10th Congress International Society of Citric,Agadir,Maroc.
  [8] Bharadwaj D N. 2015. Polyploidy in crop improvement and evolution//Bahadur B,Rajam M V,Sahijram L,Krishnamurthy K V. Plant Biology and Biotechnology. India:India Springer:619 - 638.
  [9] Chao D Y,Dilkes B,Luo H,Douglas A,Yakubova E,Lahner B,Salt D E. 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science,341 (6146):658 - 659.
  [10] Chen C L,Gong X. 1996. Early yield and dwarfing performance test of pear by using intermediate stock. China Fruit,(3):24 - 25. (in Chinese)
  [11] Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics,6 (11):836 - 846.
  [12] Cui L,Wall P K,Leebens-Mack J H,Lindsay B G,Soltis D E,Doyle J J,Soltis P S,Carlson J E,Arumuganathan K,Barakat A ,Albert V A,Ma H,de Pamphilis C W. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Research,16 (6):738 - 748.
  [13] Dong Wen-xuan,Jing Shi-xi,Xuan Jing-hong. 1996. Research and utilization of the apomictic characteristic in Malus-a literature review. Acta Horticulturae Sinica,23 (4):343 - 348. (in Chinese)
  [14] Dutra de Souza J,de Andrade Silva E M,Coelho Filho M A,Morillon R,Bonatto D,Micheli F,da Silva Gesteira A. 2017. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PloS One,12 (5):e0177993.
  [15] Guo Y. Morphological,physiological and biochemical characteristics of tetraploid apple rootstock and its effect on scion[M. D. Dissertation]. 2012. Baoding:Hebei Agricultural University. (in Chinese)
  [16] Gao-Takai M,Katayama-Ikegami A,Nakano S,Matsuda K,Motosugi H. 2017. Vegetative growth and fruit quality of 'Ruby Roman' grapevines grafted on two species of rootstock and their tetraploids. Horticulture Journal,86 (2):171 - 182.
  [17] Grosser J W,Graham J H, McCoy C W,Hoyte A,Rubio H M,Bright D B,Chandler J L. 2003. Development of “Tetrazyg” rootstocks tolerant of the Diaprepes/ Phytophthora complex under greenhouse conditions//Proceedings of the Florida State Horticultural Society, (116):263 - 267.
  [18] Grosser J W,Chandler J L,Ling P,Barthe G A. 2011. New somatic hybrid rootstock candidates for tree-size control and high juice quality//Proceedings of the Florida State Horticultural Society,(124):131 - 135.
  [19] Grosser J W,Gmitter Jr F G. 2011. Protoplast fusion for production of tetraploids and triploids:applications for scion and rootstock breeding in citrus. Plant Cell Tissue & Organ Culture,104 (3):343 - 357.
  [20] Grosser J W,Omar A A,Gmitter J A. 2012. Salinity tolerance of ‘Valencia’ orange trees on allotetraploid rootstocks//Proceedings of the Florida State Horticultural Society,(125):50 - 55.
  [21] Han Zhen-hai,Wang Yi,Zhang Xin-zhong,Xu Xue-feng,Sun Yang-wu, Shen Jun. 2013. Apple rootstock new variety Chistock #1. Journal of Agricultural Biotechnology,21 (7):879 - 882. (in Chinese)
  [22] Hussain S,Curk F,Dhuique-Mayer C,Urbanc L,Ollitraultd P,Luroa F,Morillon R. 2012. Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Scientia Horticulturae,134 (2):100 - 107.
  [23] Ji Ai-qing, Wu Guo-liang. 2011. Advance in research on somatic embryogenesis of fruit tree. Northern Horticulture, (13): 188-193.
  [24] Jia Jing-xian,Chen Chang-lan,Gong Xin. 1991. Study on dwarfing effect and its mechanism of pear dwarfing intermediate stock PDR54. China Fruit,1991(1):13-15. (in Chinese)
  [25] Jia L G. 2015. Characteristics of tretraploid SH40 apple dwarfing rootstock and its effect on the growth and physiological metabolism of scion[M. D. Dissertation]. Baoding:Hebei Agricultural University. (in Chinese)
  [26] Kamiński W,Rudnicki R,Pieni??ek J. 1971. Some growth responses of apple seedlings to abscisic acid and growth stimulators. 13 (2):128 - 132
  [27] Kurepa J,Smalle J A. Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. Plant Physiology, 150 (1):178-189.
  [28] Li Ling. 2001. Physiological and molecular basis for resistance to iron chlorosis in Malus xiaojinensis and Citrus junos. Chonogqing:Southwest University,
  [29] Li Yu-na. 2016. Mechanism of NO-mediated in response to iron deficiency of the Malus Xiaojinensis [M. D. Dissertation]. Yaan:Sichuan Agricultural University
  [30] Liang Sen-lin,Dang Jiang-bo,Liang Guo-lu,Guo Qi-gao. 2018. Meiosis observation and fertility analysis in natural tetraploid loquat of‘B431’. Acta Horticulturae Sinica, 45(10):1895 - 1904.
  [31] Liu Dan-dan. 2012. Analysis on apomixis development and genetic characteristics of Malus hupehensis Redh. var. pingyiensis and functional identification of related genes[Ph. D. Dissertation]. Taian:Shandong Agricultural University. (in Chinese)
  [32] Liu Qing-zhong,Wang Xia-li. 2000. New clonal dwarf cherry rootstock- ‘Gisela’. Deciduous Fruits,32 (3):18 - 20. (in Chinese)
  [33] Liu Qing-zhong,Zhao Hong-jun,Li Zhi-qiang. 2001. Plant regeneration from in vitro leaves of cherry dwarf rootstock. Journal of Fruit Science,18 (5):255 - 257. (in Chinese)
  [34] Liu Qing-zhong,Zhang Li-si,Li Bo,Wei Hai-rong,Ai Cheng-xiang,Zhao Hong-jun. 2006. A new cherry dwarf rootstock variety ‘Jisaila 6#’. 33 (1):213. (in Chinese)
  [35] Liu Wei. Functional research of ethylene response fator ERF4/ERF72 involved in iron deficiency responseof apple rootstocks [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [36] Madlung A,Tyagi A,Watson B,Jiang H,Kagochi T,Doerge R W,Martienssen R,Comai L. 2005. Genomic changes in synthetic Arabidopsis polyploids. The Plant Journal,(41):221 - 230
  [37] Masterson J. 1994. Stomatal size in fossil plants:evidence for polyploidy in majority of angiosperms. Science,264 (5157):421 - 424.
  [38] Meng H B,Jiang S S,Hua S J,Lin X Y,Li Y L,Guo W L,Jiang L X. 2011. Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.):the adaptation to salinity stress. Journal of Integrative Agriculture,10 (3):363 - 375.
  [39] Mertten D,Tsang G K,Manako K I,McNeilage M A,Datson P M. 2012. Meiotic chromosome pairing in Actinidia chinensis var. deliciosa. Genetica 140 (10-12):455 - 462.
  [40] Motosugi H,Okudo K,Kataoka D,Naruo T. 2002. Comparison of growth characteristics between diploid and colchicine-induced tetraploid grape rootstocks. Journal of the Japanese Society for Horticultural Science,71 (3):335 - 341.
  [41] Motosugi H, Naruo T. 2003. Production of triploid grape rootstocks by embryo culture and their growth characteristics. Journal of the Japanese Society for Horticultural Science,72(2):107 - 115.
  [42] Motosugi H,Yamamoto Y,Naruo T,Yamaguchi D. 2007. Growth and fruit quality of ‘Kyoho’ grapevines grafted on autotetraploid rootstocks. Journal of the Japanese Society for Horticultural Science,76 (4):271 - 278.
  [43] Mouhaya W,Allario T,Costantino G,Andres F,Talon M,Luro F,Ollitrault P,Morillon R. 2008. Citrus tetraploid rootstocks are more tolerant to salt stress than diploid. Modern variety breeding for present and future needs//18th EUCARPIA General Congress, Valencia, Spain. Universidad Politécnica de Valencia. s.l. : s.n., Résumé, 439.
  [44] Niu Zi-mian,Liang De-sheng. 1991. A study on the correlation between ABA content and growth and development of apple rootstock. Journal of Beijing Forestry University,13 (3):50 - 55.
  [45] Oustric J,Morillon R,Luro F,Herbette S,Lourkisti R,Giannettini J,Berti L,Santini J. 2017. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). Journal of Plant Physiology,(214):108 - 115.
  [46] Pan Hai-fa. 2015. Preliminary study on iron transport mechanism of MxNRAMP1protein in Malus Xiaojinensis [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [47] Pikaard C S. 2001. Genomic change and gene silencing in polyploids. Trends in Genetics,17 (12):675 - 677.
  [48] Podda A,Checcucci G,Mouhaya W,Centeno D,Rofidal V,Del Carratore R,Luro F,Morillon R,Ollitrault P,Maserti B E. 2013. Salt-stress induced changes in the leaf proteome of diploid and tetraploid mandarins with contrasting Na+, and Cl?, accumulation behaviour. Journal of Plant Physiology,170 (12):1101 - 1112.
  [49] Rao Jing-yun,Liu Yi-fei,Huang Hong-wen. 2012. Analysis of ploidy segregation and genetic variation of progenies of different interploidy crosses in Actinidia chinensis. Acta Horticulturae Sinica,39 (8):1447 - 1456. (in Chinese)
  [50] Ruiz M,Pina J A,Alcayde E,Morillon R,Navarro L,Primo-Millo E. 2012. Behavior of diploid and tetraploid genotypes of ‘Carrizo’ citrange under abiotic stress//ISHS Acta Horticulturae 1065:XII International Citrus Congress - International Society of Citriculture.
  [51] Ruiz M,Qui?ones A,Martínez-Alcántara B,Aleza P,Morillon R,Navarro L,Primo-Millo E,Martínez-Cuenca M R. 2016a. Tetraploidy enhances boron-excess tolerance in ‘Carrizo’ citrange (Citrus sinensis L. Osb. ×Poncirus trifoliate L. Raf). Frontiers in Plant Science,7 (e1000492).
  [52] Ruiz M,Quinones A,Martínez-Alcántara B,Aleza P,Morillon R,Navarro L,Primo-Millo E,Martínez-Cuenca M R. 2016b. Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla,genotypes. Scientia Horticulturae,(207):33 - 40.
  [53] Ruiz M, Qui?ones A, Martínez-Cuenca M R, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Alcántara B. 2016c, Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. Journal of Plant Physiology, 205:1-10.
  [54] Saleh B,Allario T,Dambier D,Ollitrault P,Morillon R. 2008. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes Rendus Biologies,331 (9):703 - 710.
  [55] Shahid M A,Balal R M,Khan N,Zotarelli L,Liu G, Ghazanfar M U,Rathinasabapathi B,Mattson N S,Martínez-Nicolas J J,Garcia-Sanchez F. 2018a. Ploidy level of citrus rootstocks affects the carbon and nitrogen metabolism in the leaves of Chromium-stressed Kinnow mandarin plants. Environmental and Experimental Botany, 149:70-80.
  [56] Shahid M A, Balal R M, Khan N, Rossi L, Rathinasabapathi B, Liu G, Khan J, Cámara-Zapata J M, Martínez-Nicolas J J, Garcia-Sanchez F. 2018b. Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environmental and Experimental Botany, 156:248-260.
  [57] Shi Yan-yu,Geng Xiao-juan,Yang Jing-hui,Zhang Chao,Chen Long,Yao Zong-guo. 2015. Impact of different containers on root architecture of poplar cuttings. Tianjin Agricultural Sciences,21 (2):104 - 107. (in Chinese)
  [58] Sugiyama S I. 2005. Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Annals of Botany,96(5):931 - 938.
  [59] Sun Chao-hua. Study on the role of reactive oxygen species (ROS) in iron deficiency response of Malus Xiaojinensis [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [60] 孙朝华. 2017. 活性氧在小金海棠缺铁应答中的作用研究[博士论文]. 北京:中国农业大学.
  [61] Tan F Q,Tu H,Liang W J,Long J M,Wu X M,Zhang H Y,Guo W W. 2015. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (Citrus junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. Bmc Plant Biology,15 (1):89.
  [62] Tsukaya H. 2008. Controlling size in multicellular organs: focus on the leaf. PLoS Biology,6 (7):1373 - 1376.
  [63] Tsukaya H. 2013. Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics. PloS One,8 (12):e83729.
  [64] Udall J A,Wendel J F. 2006. Polyploidy and crop improvement. Crop Science,46 (Supplement 1):S3 - S14.
  [65] Vergara R, Noriega X, Aravena K, Prieto H,Pérez F J. 2017. ABA represses the expression of cell cycle genes and may modulate the development of endodormancy in grapevine buds. Frontiers in Plant Science,(8):812.
  [66] Vieira D D S S,Emiliani G,Michelozzi M,Centritto M,Luro F,Morillon R,Loreto F,Gesteira A S,Maserti B E. 2016. Polyploidization alters constitutive content of volatile organic compounds (VOC) and improves membrane stability under water deficit in Volkamer lemon (Citrus limonia Osb.) leaves. Environmental & Experimental Botany,126 (20):1 - 9.
  [67] Vujovi? T, Cerovi? R, Ru?i? D. 2012. Ploidy level stability of adventitious shoots of sour cherry ‘?a?anski Rubin’ and Gisela 5 cherry rootstock. Plant Cell Tissue & Organ Culture, 111(3):323-333.
  [68] Wang Jingying. 2006. Identification of Fe-efficiency related proteins induced by iron deficiency stress from roots of Malus xiaojinensis. Beijing:China Agricultural University.
  [69] Wang Shao-jia. Study on genes related to iron deficiency stress of Malus Xiaojinensis based on transcriptome sequencing [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [70] Webster T,Tobutt K,Evans K. 2000. Breeding and evaluation of new rootstocks for apple, pear and sweet cherry. Compact Fruit Tree,33 (4):100 - 104.
  [71] Wood T E,Takebayashi N,Barker M S,Mayrose I,Greenspoon P B,Rieseberg L H. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America,106 (33):13875 - 13879.
  [72] Wu J H,Datson P M,Manako K I,Murray B G. 2014. Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis. Theoretical & Applied Genetics,127 (3):549 - 557.
  [73] Xue Hao,Zhang Feng,Zhang Zhi-hong,Fu Jun-fan,Wang Feng,Zhang Bing,Ma Yue. Differences in salt tolerance between the diploid and autotetraploid ‘Hanfu’ apple. Acta Horticulturae Sinica,42 (5):826 - 832. (in Chinese)
  [74] Yan Shu-tang,Xu Ji-zhong. The effects of different dwarfing interstocks on the endogenous hormones, polyamines and cell division in fruits of red Fuji apple. Acta Horticulturae Sinica,32 (1):81 - 83. (in Chinese)
  [75] Yao C,Finlayson S A. 2015. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiology. 169 (1):611-626.
  [76] Yu Jun,Wang Yi,Wu Ting,Zhang Xin-zhong,Han Zhen-hai. Evaluation of Golden Delicious/Chistock 1 on resistance to low iron stress. Acta Horticulturae Sinica,42 (4):769 - 777.
  [77] Zhang Qiang,Wei Qin-ping,Liu Song-zhong,Wang Xiao-wei,Shang Zhi-hua,Lu Jin-jin. 2013. Formation of canopy structure, yield and fruit quality of 'Fuji' apple with SH6 dwarf interstock from juvenility to fruiting early stage. Scientia Agricultura Sinica,46 (9):1874 –1880. (in Chinese)

重要提示:转载本站信息须注明来源:原创论文网,具体权责及声明请参阅网站声明。
阅读提示:请自行判断信息的真实性及观点的正误,本站概不负责。